
UNIT – I
WAVESHAPING CIRCUITS

Wave shaping circuits: Types of waveforms, RC low pass and high pass circuits, rise time, tilt, Diode as a switch, Diode clipper and clamper circuits.

LINEAR WAVESHAPING CIRCUITS :

 A linear network is a network made up of linear elements only. A linear network can be described by linear differential equations. The principle of superposition and the principle of homogeneity hold good for linear networks. In pulse circuitry, there are a number of waveforms, which appear very frequently. The most important of these are sinusoidal, step, pulse, square wave, ramp, and exponential waveforms. The response of RC, RL, and RLC circuits to these signals is described in this chapter. Out of these signals, the sinusoidal signal has a unique characteristic that it preserves its shape when it is transmitted through a linear network, i.e. under steady state, the output will be a precise reproduction of the input sinusoidal signal. There will only be a change in the amplitude of the signal and there may be a phase shift between the input and the output waveforms. The influence of the circuit on the signal may then be completely specified by the ratio of the output to the input amplitude and by the phase angle between the output and the input. No other periodic waveform preserves its shape precisely when transmitted through a linear network, and in many cases the output signal may bear very little resemblance to the input signal.

 The process whereby the form of a non-sinusoidal signal is altered by transmission through a linear network is called linear wave shaping.
THE LOW-PASS RC CIRCUIT :
Figure 1.1 shows a low-pass RC circuit. A low-pass circuit is a circuit, which transmits only low-frequency signals and attenuates or stops high-frequency signals.
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At zero frequency, the reactance of the capacitor is infinity (i.e. the capacitor acts as an open circuit) so the entire input appears at the output, i.e. the input is transmitted to the output with zero attenuation. So the output is the same as the input, i.e. the gain is unity. As the frequency increases the capacitive reactance (Xc =1/2πfC) decreases and so the output decreases. At very high frequencies the capacitor virtually acts as a short-circuit and the output falls to zero.
Sinusoidal Input : 

The Laplace transformed low-pass RC circuit is shown in Figure 1.2(a). The gain versus frequency curve of a low-pass circuit excited by a sinusoidal input is shown in Figure 1.2(b). This curve is obtained by keeping the amplitude of the input sinusoidal signal constant and varying its frequency and noting the output at each frequency. At low frequencies the output is equal to the input and hence the gain is unity. As the frequency increases, the output decreases and hence the gain decreases. The frequency at which the gain is l/√2 (= 0.707) of its maximum value is called the cut-off frequency. For a low-pass circuit, there is no lower cut-off frequency. It is zero itself. The upper cut-off frequency is the frequency (in the high-frequency range) at which the gain is 1/√2 . i-e- 70.7%, of its maximum value. The bandwidth of the low-pass circuit is equal to the upper cut-off frequency f2 itself.
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For the network shown in Figure 1.2(a), the magnitude of the steady-state gain A is given by
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Step-Voltage Input :

A step signal is one which maintains the value zero for all times t < 0, and maintains the value V for all times t > 0. The transition between the two voltage levels takes place at t = 0 and is accomplished in an arbitrarily small time interval. Thus, in Figure 1.3(a), vi = 0 immediately before t = 0 (to be referred to as time t = 0-) and vi = V, immediately after t= 0 (to be referred to as time t = 0+). In the low-pass RC circuit shown in Figure 1.1, if the capacitor is initially uncharged, when a step input is applied, since the voltage across the capacitor cannot change instantaneously, the output will be zero at t = 0, and then, as the capacitor charges, the output voltage rises exponentially towards the steady-state value V with a time constant RC as shown in Figure 1.3(b).
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Let V’ be the initial voltage across the capacitor. Writing KVL around the IOOP in Figure 1.1.
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Expression for rise time :
When a step signal is applied, the rise time tr is defined as the time taken by the output voltage waveform to rise from 10% to 90% of its final value: It gives an indication of how fast the circuit can respond to a discontinuity in voltage. Assuming that the capacitor in Figure 1.1 is initially uncharged, the output voltage shown in Figure 1.3(b) at any instant of time is given by
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This indicates that the rise time tr is proportional to the time constant RC of the circuit. The larger the time constant, the slower the capacitor charges, and the smaller the time constant, the faster the capacitor charges.
Relation between rise time and upper 3-dB frequency 
We know that the upper 3-dB frequency (same as bandwidth) of a low-pass circuit is
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Thus, the rise time is inversely proportional to the upper 3-dB frequency. 
The time constant (Τ= RC) of a circuit is defined as the time taken by the output to rise to 63.2% of the amplitude of the input step. It is same as the time taken by the output to rise to 100% of the amplitude of the input step, if the initial slope of rise is maintained. See Figure 1.3(b). The Greek letter T is also employed as the symbol for the time constant.
Pulse Input :

The pulse shown in Figure 1.4(a) is equivalent to a positive step followed by a delayed negative step as shown in Figure 1 .4(b). So, the response of the low-pass RC circuit to a pulse for times less than the pulse width tp is the same as that for a step input and is given by v0(t) = V(l – e-t/RC). The responses of the low-pass RC circuit for time constant RC » tp, RC smaller than tp and RC very small compared to tp are shown in Figures 1.5(a), 1.5(b), and 1.5(c) respectively. 

If the fime constant RC of the circuit is very large, at the end of the pulse, the output voltage will be Vp(t) = V(1 – e-tp/RC), and the output will decrease to zero from this value with a time constant RC as shown in Figure 1.5(a). Observe that the pulse waveform is distorted when it is passed through a linear network. The output will always extend beyond the pulse width tp, because whatever charge has accumulated across the capacitor C during the pulse cannot leak off instantaneously.
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If the time constant RC of the circuit is very small, the capacitor charges and discharges very quickly and the rise time tr will be small and so the distortion in the wave shape is small. For minimum distortion (i.e. for preservation of wave shape), the rise time must be small compared to the pulse width tp. If the upper 3-dB frequency /2 is chosen equal to the reciprocal of the pulse width tp, i.e. if f2 = 1/tp then tr = 0.35tp and the output is as shown in Figure 1.5(b), which for many applications is a reasonable reproduction of the input. As a rule of thumb, we can say:
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A pulse shape will be preserved if the 3-dB frequency is approximately equal to the reciprocal of the pulse width. 
Thus to pass a 0.25 μ.s pulse reasonably well requires a circuit with an upper cut-off frequency of the order of 4 MHz.
Square-Wave Input :

A square wave is a periodic waveform which maintains itself at one constant level V’ with respect to ground for a time T1 and then changes abruptly to another level V", and remains constant at that level for a time T2, and repeats itself at regular intervals of T = T1 + T2. A square wave may be treated as a series of positive and negative steps. The shape of the output waveform for a square wave input depends on the time constant of the circuit. If the time constant is very small, the rise time will also be small and a reasonable reproduction of the input may be obtained.
For the square wave shown in Figure 1.6(a), the output waveform will be as shown in Figure 1.6(b) if the time constant RC of the circuit is small compared to the period of the input waveform. In this case, the wave shape is preserved. If the time constant is comparable with the period of the input square wave, the output will be as shown id Figure 1.6(c). The output rises and falls exponentially. If the time constant is very large compared to the period of the input waveform, the output consists of exponential sections, which are essentially linear as indicated in Figure 1.6(d). Since the average voltage across R is zero, the dc voltage at the output is the same as that of the input. This average value is indicated as V&. in all the waveforms of Figure 1.6.
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When the time constant is very small relative to the total ramp time T, the ramp will be transmitted with minimum distortion. The output follows the input but is delayed by one time constant RC from the input (except near the origin where there is distortion) as shown in Figure 1.7(a). If the time constant is large compared with the sweep duration, i.e. if RCIT » 1, the output will be highly distorted as shown in Figure 1.7(b).
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This shows that a quadratic response is obtained for a linear input and hence the circuit acts as an integrator for RC/T » 1. The transmission error et for a ramp input is defined as the difference between the input and the output divided by the input at the end of the ramp, i.e. at t = T.
For RC/T «1,
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where f2 is the upper 3-dB frequency. For example, if we desire to pass a 2 ms pulse with less than 0.1% error, the above equation yields f2 > 80 kHz and RC < 2 μ.s.
Exponential Input :

For the low-pass RC circuit shown in Figure 1.1, let the input applied as shown in Figure 1.8 be vi(t ) = V(l – e-tlτ), where T is the time constant of the input waveform.
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These are the expressions for the voltage across the capacitor of a low-pass RC circuit excited by an exponential input of rise time tr1 - 2.2r. If an exponential of rise time tr1 is passed through a low-pass circuit with rise time tr2, the rise time of the output waveform tr will be given by an empirical relation, tr =1.05√tr12 + tr22 .This is same as the rise time obtained when a step is applied to a cascade of two circuits of rise times trl and tr2 assuming that the second circuit does not load the first.


THE LOW-PASS RC CIRCUIT AS AN INTEGRATOR :

If the time constant of an RC low-pass circuit is very large, the capacitor charges very slowly and so almost all the input voltage appears across the resistor for small values of time. Then, the current in the circuit is vi(t)/ R and the output signal across C is
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As time increases, the voltage drop across C does not remain negligible compared with that across R and the output will not remain the integral of the input. The output will change from a quadratic to a linear function of time. If the time constant of an RC low-pass circuit is very large in comparison with the. time required for the input signal to make an appreciable change, the circuit acts as an integrator. A criterion for good integration in terms of steady-state analysis is as follows: The low-pass circuit acts as an integrator provided the time constant of the circuit RC > 15T, where T is the period of the input sine wave. When RC > 15T, the input sinusoid will be shifted at least by 89.4° (instead of the ideal 90° shift required for integration) when it is transmitted through the network. 
An RC integrator converts a square wave into a triangular wave. Integrators are almost invariably preferred over differentiators in analog computer applications for the following reasons:

1. It is easier to stabilize an integrator than a differentiator because the gain of an integrator decreases   
    with frequency whereas the gain of a differentiator increases with frequency. 
2. An integrator is less sensitive to noise voltages than a differentiator because of its limited 
    bandwidth. 
3. The amplifier of a differentiator may overload if the input waveform changes very rapidly. 
4. It is more convenient to introduce initial conditions in an integrator.
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THE HIGH-PASS RC CIRCUIT :

Figure 1.30 shows a high-pass RC circuit. At zero frequency the reactance of the capacitor is infinity and so it blocks the input and hence the output is zero. Hence, this capacitor is called the blocking capacitor and this circuit, also called the capacitive coupling circuit, is used to provide dc isolation between the input and the output. As the frequency increases, 'the reactance of the capacitor decreases and hence the output and gain increase. At very high frequencies, the capacitive reactance is very small so a very small voltage appears, across C and, so the output is almost equal to the input and the gain is equal to 1. Since this circuit attenuates low-frequency signals and allows transmission of high-frequency signals with little or no attenuation, it is called a high-pass circuit.
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Sinusoidal Input :

Figure 1.31 (a) shows the Laplace transformed high-pass RC circuit. The gain versus frequency curve of a high-pass circuit excited by a sinusoidal input is shown in Figure 1.31(b). For a sinusoidal input v,, the output signal v0 increases in amplitude with increasing frequency. The frequency at which the gain is 1/V2 of its maximum value is called the lower cut-off or lower 3-dB frequency. For a high-pass circuit, there is no upper cut-off frequency because all high frequency signals are transmitted with zero attenuation. Therefore, f2 – f1. Hence bandwidth B.W= f2 - f1 = ∞
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Expression for the lower cut-off frequency 

For the high-pass RC circuit shown in Figure 1.31 (a), the magnitude of the steady-state gain A, and the angle θ by which the output leads the input are given by
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This is the expression for the lower cut-off frequency of a high-pass circuit.
Relation between f1 and tilt :

The lower cut-off frequency of a high-pass circuit is /i = \/2nRC. The lower cut-off frequency produces a tilt. For a 10% change in capacitor voltage, the time or pulse width involved is
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This equation applies only when the tilt is 10% or less. When the tilt exceeds 10%, the voltage should be treated as exponential instead of linear and the equation should be applied.

Step Input :

When a step signal of amplitude V volts shown in Figure 1.32(a) is applied to the high-pass RC circuit of Figure 1.30, since the voltage across the capacitor cannot change instantaneously the output will be just equal to the input at t = 0 (for f < 0, v,- = 0 and va = 0). Later when the capacitor charges exponentially, the output reduces exponentially with the same time constant RC. The expression for the output voltage for t > 0 is given by
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by Figure 1.32(b) shows the response of the circuit for large, small, and very small time constants. For t > 5r, the output will reach more than 99% of its final value. Hence although the steady state is approached asymptotically, for most applications we may assume that the final value has been reached after 5f. If the initial slope of the exponential is maintained, the output falls to zero in a time t = T
The voltage across a capacitor can change instantaneously only when an infinite current passes through it, because for any finite current i(t) through the capacitor, the instantaneous change in voltage across the capacitor is given by
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Pulse Input :

A pulse of amplitude V and duration tp shown in Figure 1.4(a) is nothing but the sum of a positive step of amplitude V starting at t = 0 and a negative step of amplitude V starting at tp as shown in Figure 1.4(b). So, the response of the circuit for 0 < t < t,, for the pulse input is the same as that for a step input and is given by v0(t) = Ve-t/ RC. At t = tp, vo(t) = V = Ve-t/RC . At t = tp,

The output waveforms for RC » tp, RC comparable to tp and RC « tp are shown in Figures 1.33(a), (b), and (c) respectively. There is distortion in the outputs and the distortion is the least when the time constant is very large. Observe that there is positive area and negative area in the output waveforms. The negative area will always be equal to the positive area. So if the time constant is very large the tilt (the almost linear decrease in the output voltage) will be small and hence the undershoot will be very small, and for t > tp, the output rises towards the zero level very very slowly. If the time constant is very small compared to the pulse width (i.e. RC/tp « T), the output consists of a positive spike or pip of amplitude V volts at the beginning of the pulse and a negative spike of the same amplitude at the end of the pulse. Hence a high-pass circuit with a very small time constant is called a peaking circuit and this process of converting pulses into pips by means of a circuit of short time constant is called peaking.
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Square-Wave Input :

A square wave shown in Figure 1.34(a) is a periodic waveform, which maintains itself at one constant level V with respect to ground for a time T{ and then changes abruptly to another level V" and remains constant at that level for a time T2, and then repeats itself at regular intervals of T = T1+ T2. A square wave may be treated as a series of positive and negative steps. The shape of the output depends on the time constant of the circuit. Figures 1.34(b), 1.34(c), 1.34(d), and 1.34(e) show the output waveforms of the high-pass RC circuit under .steady-state conditions for the cases (a) RC » T, (b) RC > T, (c) RC - T, and (d) RC « T respectively. 
When the time constant is arbitrarily large (i.e. RC/T1 and RC/T2 are very very large in comparison to unity) the output is same as the input but with zero dc level. When RC > T, the output is in the form of a tilt. When RC is comparable to T, the output rises and falls exponentially. When RC « T (i.e. RCIT\ and RC/T2 are very small in comparison to unity), the output consists of alternate positive and negative spikes. In this case the peak-to-peak amplitude of the output is twice the peak-to-peak value of the input.In fact, for any periodic input waveform under steady-state conditions, the average level of the output waveform from the high-passcircuit of Figure 1.30 is always zero independently of the dc level of the input. The proof is as follows: Writing KVL around the loop of Figure 1.30,
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Under steady-state conditions, the output waveform (as well as the input signal) is repetitive with a period T so that v0(T) = v0(0) and v,(T) = v,(0).

Hence [image: ]Since this integral represents the area under the output waveform over one cycle, we can say that the average level of the steady-state output signal is always zero. This can also be proved based on frequency domain analysis as follows. The periodic input signal may be resolved into a Fourier series consisting of a constant term and an infinite number of sinusoidal components whose frequencies are multiples of / = 1/T. Since the blocking capacitor presents infinite impedance to the dc input voltage, none of these dc components reach the output under steady-state conditions. Hence the output signal is a sum of sinusoids whose frequencies are multiples of/. This waveform is therefore periodic with a fundamental period T but without a dc component. With respect to the high-pass circuit of Figure 1.30, we can say that:

1. The average level of the output signal is always zero, .independently of the average level of the input. The output must consequently extend in both negative and positive directions with respect to the zero voltage axis and the area of the part of the waveform above the zero axis must equal the area which is below the zero axis. 
2. When the input changes abruptly by an amount V, the output also changes abruptly by an equal amount and in the same direction. 
3. During any finite time interval when the input maintains a constant level, the output decays exponentially towards zero voltage.
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Under steady-state conditions, the capacitor charges and discharges to the same voltage levels in each cycle. So the shape of the output waveform is fixed.
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Expression for the percentage tilt :

We will derive an expression for the percentage tilt when the time constant RC of the circuit is very large compared to the period of the input waveform, i.e. RC » T. For a symmetrical square wave with zero average value
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Ramp Input :

A waveform which is zero for t < 0 and which increases linearly with time for t > 0 is called a ramp or sweep voltage. When the high-pass RC circuit of Figure 1.30 is excited by a ramp input v/(r) = at, where a is the slope of the ramp, the
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Figure 1.36 shows the response of the high-pass circuit for a ramp input when (a) RC» T, and 
(b) RC « T, where T is the duration of the ramp. For small values of T, the output signal falls away slightly from the input as shown in the Figure 1.36(a).
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When a ramp signal is transmitted through a linear network, the output departs from the input. A measure of the departure from linearity expressed as the transmission error e, is defined as the difference between the input and the output divided by the input. The transmission error at a time
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t = T is then

For large values of t in comparison with RC, the output approaches the constant value aRC as indicated in Figure 1.36(b).



Exponential Input :

When the high-pass RC circuit of Figure 1.30 is excited by an exponential input vi(r) = V(l - e -t/ ґ ) shown in Figure 1.8, where T is the time constant of the input, the output taken across the resistor is given by
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If the time constant of the circuit is very high, n is high and the second term of the equation for n # 1 is negligible compared to the first term except for small values of time.
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This equation agrees with the way the circuit should behave for an ideal step voltage. The response of the high-pass circuit for different values of n is shown in Figure 1.37.
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Near the origin of time the output follows the input. Also, the smaller the circuit time constant, the smaller will be the output peak and the narrower will be the pulse. The larger the circuit time constant, the larger will be the peak output and also the wider will be the pulse.

The maximum output occurs when
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Since τ = t/T, the time to rise to peak tp is given by
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To obtain the maximum value of output, substitute this value of -x in the expression for v0(t)
[image: ]
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THE HIGH-PASS RC CIRCUIT AS A DIFFERENTIATOR :

When the time constant of the high-pass RC circuit is very very small, the capacitor charges very quickly; so almost all the input v,(0 appears across the capacitor and the voltage across the resistor will be negligible compared to the voltage across the capacitor. Hence the current is determined entirely by the capacitance. Then the current
[image: ]

Thus we see that the output is proportional to the derivative of the input. The high-pass RC circuit acts as a differentiator provided the RC time, constant of the circuit is very small in comparison with the time required for the input signal to make an appreciable change. The derivative of a step signal is an impulse of infinite amplitude at the occurrence of the discontinuity of step. The derivative of an ideal pulse is a positive impulse followed by a delayed negative impulse, each of infinite amplitude and occurring at the points of discontinuity. The derivative of a square wave is a waveform which is uniformly zero except, at the points of discontinuity. At these points, precise differentiation would yield impulses of infinite amplitude, zero width and alternating polarity. For a square wave input, an RC high-pass circuit with very small time constant will produce an output, which is zero except at the points of discontinuity. At these points of discontinuity, there will be peaks of finite amplitude V. This is because the voltage across R is not negligible compared with that across C.An RC differentiator converts a triangular wave into a square wave. For the ramp vi = at, the value of RC(dv/dt) = aRC. This is true except near the origin. The output approaches the proper derivative value only after a lapse of time corresponding to several time constants. The error near θ= 0 is again due to the fact that in this region the voltage across R is not negligible compared with that across C.

If we assume that the leading edge of a pulse can be approximated by a ramp, then we can measure the rate of rise of the pulse by using a differentiator. The peak output is measured on an oscilloscope, and from the equation = aRC, we see that this voltage divided by the product RC gives the slope a.A criteria for good differentiation in terms of steady-state sinusoidal analysis is, that if a sine wave is applied to the high-pass RC circuit, the output will be a sine wave shifted by a leading angle θ such that: [image: ] with the output being proportional to sin(a>t + θ). In order to have true differentiation, we must obtain cos ωt. In other words, θ must equal 90°. This result can be obtained only if R =,0 or C = 0. However, if ωRC =0.01, then 1/ωRC = 100 and θ = 89.4°, which is sufficiently close to 90° for most purposes. If ωRC = 0.1, then 90 - 84.3° and for some applications this may be close enough to 90°.If the peak value of input is Vm, the output is [image: ] and if ωRC « 1, then the output is approximately VmωRC cos (at. This result agrees with the expected value RC(dvt/dt). If ωRC = 0.01, then the output amplitude is 0.01 times the input amplitude.























NON LINEAR WAVESHAPING CIRCUITS :

In the previous chapter we discussed about linear wave shaping. We saw how a change of wave shape was brought about when a non-sinusoidal signal is transmitted through a linear network like RC low pass and high pass circuit. In this chapter, we discuss some aspects of nonlinear wave shaping like clipping and clamping. The circuits for which the outputs are non-sinusoidal for sinusoidal inputs are called nonlinear wave shaping circuits, for example clipping circuits and clamping circuits. 
Clipping means cutting and removing a part. A clipping circuit is a circuit which removes the undesired part of the waveform and transmits only the desired part of the signal which is above or below some particular reference level, i.e. it is used to select for transmission that part of an arbitrary waveform which lies above or below some particular reference. Clipping circuits are also called voltage (or current) limiters, amplitude selectors or slicers. 
Nonlinear wave shaping circuits may be classified as clipping circuits and clamping circuits. Clipping circuits may be single level clippers or two level clippers. 
Single level clippers may be series diode clippers with and without reference or shunt diode clippers with and without reference. Clipping circuits may use diodes or transistors. 
Clamping circuits may be negative clampers (positive peak clampers) with and without reference or positive clampers (negative peak clampers) with and without reference.

CLIPPING CIRCUITS :

In general, there are three basic configurations of clipping circuits. 
1. A series combination of a diode, a resistor and a reference voltage. 
2. A network consisting of many diodes, resistors and reference voltages. 
3. Two emitter coupled transistors operating as a differential amplifier.

Diode Clippers :
Figure 2.1(a) shows the v-i characteristic of a practical diode. Figures 2.1(b), (c), (d), and (e) show the v-i characteristics of an idealized diode approximated by a curve which is piece-wise linear and continuous. The break point occurs at Vr, where Vr = 0.2 V for Ge and Vr = 0.6 V for Si. Usually Vr is very small compared to the reference voltage VR and can be neglected.
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Shunt Clippers :
Clipping above reference level :

Using the ideal diode characteristic of Figure 2.2(a), the clipping circuit shown in Figure 2.2(b), has the transmission characteristic shown in Figure 2.2(c). The transmission characteristic which is a plot of the output voltage v0 as a function of the input voltage v, also exhibits piece-wise linear discontinuity. The break point occurs at the reference voltage VR. To the left of the break point i.e. for vt < VR the diode is reverse biased (OFF) and the equivalent circuit shown in Figure 2.2(d) results. In this region the signal v, may be transmitted directly to the output, since there is no load across the output to cause a drop across the series resistor /?. To the right of the break point i.e. for v( > VR the diode is forward biased (ON) and the equivalent circuit shown in Figure 2,2(e) results and increments in the inputs are totally attenuated and the output is fixed at VR. 
Figure 2.2(c) shows a sinusoidal input signal of amplitude large enough so that the signal makes excursions past the break point. The corresponding output exhibits a suppression of the positive peak of the signal. The output will appear as if the positive peak had been clipped off or sliced off

Clipping below reference level :

If this clipping circuit of Figure 2.2(b), is modified by reversing the diode as shown in Figure 2.3(a), the corresponding piece-wise linear transfer characteristic and the output for a sinusoidal input will be as shown in Figure 2.3(b). In this circuit, the portion of the waveform more positive than VR is transmitted without any attenuation but the portion of the waveform less positive than VR is totally suppressed. For Vj < VR, the diode conducts and acts as a short circuit and the equivalent circuit shown in Figure 2.3(c) results and the output is fixed at VR. For v, > VR, the diode is reverse biased and acts as an open circuit and the equivalent circuit shown in Figure 2.3(d) results and the output is the same as the input.
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Figure 2.2 (a) v-i characteristic of an ideal diode, (b) diode clipping circuit, which removes that part of the waveform that is more positive than VR, (c) the piece-wise linear transmission characteristic of the circuit, a sinusoidal input and the clipped output, (d) equivalent circuit for v( < VR, and (e) equivalent circuit for v, > VR.
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Figure 2.3 (a) A diode clipping circuit, which transmits that part of the sine wave that is more positive than VR, (b) the piece-wise linear transmission characteristic, a sinusoidal input and the clipped output, (c) equivalent circuit for v( < VR, and (d) equivalent circuit for v,- > VR.

In Figures 2.1(b) and 2.2(a), we assumed that Rr = °° and Rf = 0. If this condition does not apply, the transmission characteristic must be modified. The portions of those curves which are indicated as having unity slope must instead be considered as having a slope of Rrl(Rr + R), and those, having zero slope as having a slope of /?/(/?/ + /?). In the transmission region of a diode clipping circuit, it is required that Rr » R, i.e. Rr = kR, where k is a large number, and in the attenuation region, it is required that R » Rf. From these equations we can deduce that R = J RrxR^ , i.e. the external resistance R is to be selected as the geometric mean of Rf and /?,. The ratio RrIRf serves as a figure of merit for the diodes used in these applications. A zener diode may also be used in combination with a p-n junction diode to obtain single-ended clipping, i.e. one-level clipping.

Series Clippers :

Clipping above the reference voltage Vn  :

Figure 2.4(a) shows a series clipper circuit using a p-n junction diode. VR is the reference voltage source. The diode is assumed to be ideal (/?/ = 0, Rr = °°, Vy= 0) so that it acts as a short circuit when it is ON and as a open circuit when it is OFF. Since the diode is in the series path connecting the input and the output it is called a series clipper. The v0 versus v, characteristic called the transfer characteristic is shown in Figure 2.4(b). The output for a sinusoidal input is shown in Figure 2.4(c).

The circuit works as follows: 
For v, < VR, the diode Dj is forward biased because its anode is at a higher potential than its cathode. It conducts and acts as a short circuit and the equivalent circuit shown in Figure 2.4(d) results. The difference voltage between the input v,- and the reference voltage VR i.e. (VR – vi) is dropped across . Therefore v0 = vi and the slope of the transfer characteristic for vi < VR is 1. Since the input signal is transmitted to the output without any change, this region is called the transmission region.
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Figure 2.4 (a) Diode series clipper circuit diagram, (b) transfer characteristic, (c) output waveform for a sinusoidal input, (d) equivalent circuit for v; < VR, and (e) equivalent circuit for v( > VR.

For v, > VR, the diode is reverse biased because its cathode is at a higher potential than its anode, it does not conduct and acts as an open circuit and the equivalent circuit shown in Figure 2.4(e) results. No current flows through R and so no voltage drop across it. So the output voltage v0 = VR and the slope of the transfer characteristic is zero. Since the input signal above VR is clipped OFF for v, > VR, this region is called the clipping region. The equations V0=Vi for Vi < VR and V0= VR for Vi > VR are called the transfer characteristic equations.

Clipping below the reference voltage VB ;

Figure 2.5(a) shows a series clipper circuit using a p-n junction diode and a reference voltage source VR. The diode is assumed to be ideal (Rf = 0, Rr = °°, Vy = 0) so that it acts as a short circuit when it is ON and as a open circuit when it is OFF. Since the diode is in the series path connecting the input and the output it is called a series clipper. The transfer characteristic is shown in Figure 2.5(b). The output for a sinusoidal input is shown in Figure 2.5(c).
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Figure 2.5 (a) Diode series clipper circuit diagram, (b). transfer characteristics, (c) output for a sinusoidal input, (d) equivalent circuit for vi < VR, and (e) equivalent circuit for vi  > VR. 
The circuit works as follows:

For vi < VR, D is reversed biased because its anode is at a lower potential than its cathode. The diode does not conduct and acts as an open circuit and the equivalent circuit shown in Figure 2.5(d) results. No current flows through R and hence no voltage drop across R and hence vo = VR- So the slope of the transfer characteristic is zero for v, < VR. Since the input is clipped off for v, < VR, this region is called the clipping region. 
For v, > VR, the diode is forward biased because its anode is at a higher potential than its cathode. The diode conducts and acts as a short circuit and the equivalent circuit shown in Figure 2.5(e) results. Current flows through /? and the difference voltage between the input and the output voltages v, - VR drops across /? and the output v0 = vi. The slope of the transfer characteristic for v, > VR is unity. Since the input is transmitted to the output for v; > VR, this region is called the transmission region. The equations 
[image: ]

are called the transfer characteristic equations. Some single-ended diode clipping circuits, their transfer characteristics and the output waveforms for sinusoidal inputs are shown below (Figure 2.6).

Some single-ended clipping circuits: 
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In the clipping circuits, the diode may appear as a series element or as a shunt element. The use of the diode as a series element has the disadvantage that when the diode is OFF and it is intended that there be no transmission, fast signals or high frequency waveforms may be transmitted to the output through the diode capacitance. The use of the diode as a shunt element has the disadvantage that when the diode is open and it is intended that there be transmission, the diode capacitance together with all other capacitances in shunt with the output terminals will round off the sharp edges of the input waveforms and attenuate, the high frequency signals.

Clipping at Two Independent Levels 

A parallel, a series, or a series-parallel arrangement may be used in double-ended limiting at two independent levels. A parallel arrangement is shown in Figure 2.7. Figure 2.8 shows the transfer characteristic and the output for a sinusoidal input. The input-output characteristic has two breakpoints, one at v0 = v, = VR1 and the second at v0 = v, = -VR2 and has the following characteristics.
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The two level diode clipper shown in Figure 2.8 works as follows. For v, > VR1, DI is ON and D2 is OFF and the equivalent circuit shown in Figure 2.9(a) results. So the output v0 = VR1 and the slope of the transfer characteristic is zero.
[image: ]

For v, < - VR2, DI is OFF and D2 is ON and the equivalent circuit shown in Figure 2.9(b) results. So the output v0 = - VR2 and the slope of the transfer characteristic is zero. For-VR2 < v, < VRI, D! is OFF and D2 is OFF and the equivalent circuit shown in Figure 2.10 results. So the output v0 = v/ and the slope of the transfer characteristic is one. 
The circuit of Figure 2.7 is called a slicer because the output contains a slice of the input between two reference levels VR! and VR2. Looking at the input and output waveforms, we observe that this circuit may be used to convert a sine wave into a square wave, if VDI = Vm. and if the amplitude of the input signal is very large compared with the difference in the reference levels, the output will be a symmetrical square wave. Two zener diodes in series opposing may also be used to form a double-ended clipper.
[image: ]
If the diodes have identical characteristics, then, a symmetrical limiter is obtained. Some double-ended clippers, their transfer characteristics and the outputs for sine wave inputs are shown in Figure 2.11.

CLAMPING CIRCUITS :

Clamping circuits are circuits, which are used to clamp or fix the extremity of a periodic waveform to some constant reference level V.R. Under steady-state conditions, these circuits restrain the extremity of the waveform from going beyond VR. Clamping circuits may be one-way clamps or two-way clamps. When only one diode is used and a voltage change in only one direction is restrained, the circuits are called one-way clamps. When two diodes are used and the voltage change in both the directions is restrained, the circuits are called two-way clamps. 

The Clamping Operation :
When a signal is transmitted through a capacitive coupling network (RC high-pass circuit), it loses its dc component, and a clamping circuit may be used to introduce a dc component by fixing the positive or negative extremity of that waveform to some reference level. For this reason, the clamping circuit is often referred to as dc restorer or dc reinserter. In fact, it should be called a dc inserter, because the dc component introduced may be different from the dc component lost during transmission. The clamping circuit only changes the dc level of the input signal. It does not affect its shape.
Classification of clamping circuits 
Basically clamping circuits are of two types: (1) positive-voltage clamping circuits and 
					          (2) negative-voltage clamping circuits. 

In positive clamping, the negative extremity of the waveform is fixed at the reference level and the entire waveform appears above the reference level, i.e. the output waveform is positively clamped with reference to the reference level. In negative clamping, the positive extremity of the waveform is fixed at the reference level and the entire waveform appears below the reference, i.e. the output waveform is negatively clamped with respect to the reference level. The capacitors are essential in clamping circuits. The difference between the clipping and clamping circuits is that while the clipper clipps off an unwanted portion of the input waveform, the clamper simply clamps the maximum positive or negative peak of the waveform to a desired level. There will be no distortion of Negative Clamper 
Figure 3.1 (a) shows the circuit diagram of a basic negative clamper. It is also termed a positive peak clamper since the circuit clamps the positive peak of a signal to zero level. Assume that the signal source has negligible output impedance and that the diode" is ideal, Rf= 0 n and Vy = 0 V in that, it exhibits an arbitrarily sharp break at 0 V, and that its input signal shown in Figure 2.71(b) is a sinusoid which begins at t = 0. Let the capacitor C be uncharged at t = 0. 
During the first quarter cycle, the input signal rises from zero to the maximum value. The diode conducts during this time and since we have assumed an ideal diode, the voltage across it is zero. The capacitor C is charged through the series combination of the signal source and the diode and the voltage across C rises sinusoidally. At -the end of the first quarter cycle, the voltage across the capacitor, vc = Vm.When, after the first quarter cycle, the peak has been passed and the input signal begins to fall, the voltage vc across the capacitor is no longer able to follow the input, because there is no path for the capacitor to discharge. Hence, the voltage across the capacitor remains constant at vc = Vm, and the charged capacitor acts as a voltage source of V.
volts and after the first quarter cycle, the output is given by v0 = v, - Vm. During the succeeding cycles, the positive extremity of the signal will be clamped or restored to zero and the output waveform shown in Figure 2.7 l(c) results. Therefore      [image: ]
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Figure 2.71 (a) A negative clamping circuit, (b) a sinusoidal input, and (c) a steady-state   
                      clamped output.
Suppose that after the steady-state condition has been reached, the amplitude of the input signal is increased, then the diode will again conduct for at most one quarter cycle and the dc voltage across the capacitor would rise to the new peak value, and the positive excursions of the signal would be again restored to zero.
Suppose the amplitude of the input signal is decreased after the steady-state condition has been reached. There is no path for the capacitor to discharge. To permit the voltage across the capacitor to decrease, it is necessary to shunt a resistor across C, or equivalently to shunt a resistor across D. In the latter case, the capacitor will discharge through the series combination of the resistor R across the diode and the resistance of the source, and in a few cycles the positive extremity would be again clamped at zero as shown in Figure 2.72(b). A circuit with such a resistor 'R is shown in Figure 2.72(a).
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Positive Clamper :

Figure 2.73(a) shows a positive clamper. This is also termed as negative peak clamper since this circuit clamps the negative peaks of a signal to zero level. The negative peak clamper, i.e. the positive clamper introduces a positive dc.
[image: ]
Let the input voltage be vi = Vm sin (ot as shown in Figure 2.73(b). When v, goes negative, the diode gets forward biased and conducts and in a few cycles the capacitor gets charged to Vm with the polarity shown in Figure 2.73(a). Under steady-state conditions, the capacitor acts as a constant voltage source and the output is   [image: ]
Based on the above relation between v0 and v,, the output voltage waveform is plotted. As seen in Figure 2.73(c) the negative peaks of the input signal are clamped to zero level. Peak-to-peak value of output voltage = peak-to-peak value of input voltage = 2Vm. There is no distortion of waveform. To accommodate for variations in amplitude of input, the diode D is shunted with a resistor as shown in Figure 2.74(a). When the amplitude of the input waveform is reduced, the output will adjust to its new value as shown in Figure 2.74(b).
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Biased Clamping 
If a voltage source of VR volts is connected in series with the diode of a clamping circuit, the input waveform will be clamped with reference to VR. Depending on the position of the diode, the input waveform may be positively clamped with reference to VR, or negatively clamped with reference to VR.
Clamping Circuit Taking Source and Diode Resistances Into Account 
In the discussion of the clamping circuit of Figure 2.71, we neglected the output resistance of the source as well as the diode forward resistance. Many times these resistances cannot be neglected. Figure 2.79 shows a more realistic clamping circuit taking into consideration the output resistance of the source Rs, which may be negligible or may range up to many thousands of ohms depending on the source, and the diode forward resistance Rf which may range from tens to hundreds of ohms. Assume that the diode break point Vy occurs at zero voltage.
[image: ]
Figure 2.79 Clamping circuit considering the source resistance and the diode forward resistance. 

The precision of operation of the circuit depends on the condition that R » Rf, and Rr » R. When the input is positive, the diode is ON and the equivalent circuit shown in Figure 2.80(a) results. When the input is negative, the diode is OFF and the equivalent circuit shown in Figure 2.80(b) results.
[image: ]
Figure 2.80 (a) Equivalent circuit when the diode is conducting and (b) the equivalent circuit when the diode is not conducting.
The transient waveform 
When a signal is suddenly applied to the circuit shown in Figure 2.79 the capacitor charges (transient period) and gradually the steady-state condition is reached in which the positive peaks will be clamped to zero. The equivalent circuits shown in Figures 2.80(a) and 2.80(b) may be used to calculate the transient response. 
Relation between tilts in forward and reverse directions 
The steady-state output waveform for a square wave input. Consider that the square wave input shown in Figure 2.82(a) is applied to the clamping circuit shown in Figure 2.79. The general form of the output waveform would be as shown in Figure 2.82(b), extending in both positive and negative directions and is determined by the voltages V1, V2, V11, and V'2. These voltages may be calculated as discussed below.
In the interval 0 < t < T, the input is at its higher level; so the diode is ON and the capacitor charges with a time constant (Rs + Rf)C, and the output decays towards zero with the same time constant. Hence,                
[image: ]
In the interval T1< t < T1 + T2, the input is at its lower level; so the diode is OFF and the capacitor discharges with a time constant (R + RS)C, and the output rises towards zero with the same time constant. Hence   
[image: ]
Considering the conditions at t= 0. At t = 0~, vs = V", v0 = V2, the diode D is OFF and the equivalent circuit of Figure 2.80(b) results. The voltage across the capacitor is given by        
[image: ]-------------(iii)
At t = 0+, the input signal jumps to V, the output jumps to Vt, the diode conducts and the equivalent circuit of Figure 2.80(a) results. The voltage across the capacitor is given by
[image: ]
Since the voltage across the capacitor cannot change instantaneously, equating equations (iii) and (iv), we have
       [image: ]
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   [image: ]
Figure 2.82 (a) A square wave input signal of peak-to-peak amplitude V, (b) the general form of the steady-state output of a clamping circuit with;' the input as in (a). 

Considering the conditions at t= Tr. At t = Tr, vs = V, v0 = V1, the diode D is ON, and the equivalent circuit of Figure 2,80(a) results. The voltage across the capacitor is given by
[image: ]-----------(vi)
At t = Tr, , vs = V"=v0 = V2, the diode D is OFF, and the equivalent circuit of Figure 2.80(b) results. 
The voltage across the capacitor is given by
[image: ]----------(viii)
From equations (i), (ii), (v) and (viii), the values V1, V’, V2 and V2’ can be computed and the output waveform determined.
If the source impedance is taken into account, the output voltage jumps are smaller than the abrupt discontinuity V in the input. Only if Rs = 0, are the jumps in input and output voltages equal. Thus, when Rs = 0,Observe that the response is independent of the absolute levels V' and V" of the input signal and is determined only by the amplitude V. It is possible, for example, for V" to be negative or even for both V and V" to be negative.
The average level of the input plays no role in determining the steady-state output waveform. 
Under steady-state conditions, there is a tilt in the output waveform in both positive and negative directions. The relation between the tilts can be obtained by subtracting Eq. (viii) from Eq. (v), i.e. 

[image: ]
Where,
[image: ]
Since Rs is usually much smaller than R, then, the tilt in the forward direction Ay is almost always less than the tilt Ar in the reverse direction. Only when Rs « Rf, are the two tilts almost equal. 

Clamping Circuit Theorem 
Under steady-state conditions, for any input waveform, the shape of the output waveform of a clamping circuit is fixed and also the area in the forward direction (when the diode conducts) and the area in the reverse direction (when the diode does not conduct) are related. 
The clamping circuit theorem states that, for any input waveform under steady-state conditions, the ratio of the area Af under the output voltage curve in the forward direction to that in the reverse direction Ar is equal to the ratio R//R- 
This theorem applies quite generally independent of the input waveform and the magnitude of the source resistance. The proof is as follows: 
Consider the clamping circuit of Figure 2.79, the equivalent circuits in Figures 2.80(a) and 2.80(b), and the input and output waveforms of Figures 2.82(a) and 2.82(b) respectively. 
In the interval 0 < t < T, the input is at its upper level, the diode is ON, and the equivalent circuit of Figure 2.80(a) results. If v/(f) is the output waveform in the forward direction, then the capacitor charging current is 
[image: ] 
Therefore, -the charge gained by the capacitor during the forward interval is
[image: ]
In the interval TJ < t < T{ + T2, the input is at its lower level, the diode is OFF, and the equivalent circuit of Figure 2.80(b) results. If vr(t) is the output voltage in the reverse direction, then the current which discharges the capacitor is
[image: ]
Therefore, the charge lost by the capacitor during the reverse interval is 
[image: ]
Under steady-state conditions, the net charge acquired by the capacitor over one cycle must be equal to zero. Therefore, the charge gained in the interval 0 < t < T}, will be equal to the charge lost in the interval T1 < t < T1 + T2, i.e. Qg = Ql
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